

Copyright
© 2015 Copyright Metalogix Corporation International GmbH.
All rights reserved. No part or section of the contents of this material may be reproduced or transmitted in any form or by any means without the written permission of Metalogix Software Corporation.
Metalogix Content Matrix Consoles™ are trademarks of Metalogix Software Corporation.
Windows SharePoint Services is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries. Other product and company names mentioned herein may be the trademarks of their respective owners.

Technical Support
For information about Metalogix Technical Support, please visit http://metalogix.com/support.

Technical support specialists can be reached by email at support@metalogix.com or by phone at 1.202.609.9100.

We want to hear from you. Please send any comments regarding this document to support@metalogix.com.

The level of technical support provided depends upon the support package that you have purchased. Contact us to discuss your support requirements.

Contents
Migration Optimization	0
Publication Date: June 9, 2015	0
Current Content Matrix Version: 7.2.0.16	0
Introduction	3
What is PowerShell	4
PowerShell object types	4
PowerShell scripting objects	4
Running PowerShell	6
Using Metalogix Content Matrix with PowerShell	8
Snapins	8
Adding Snapins	8
Using Metalogix Cmdlets	9

[bookmark: _Toc381223956][bookmark: _Toc421633494]Introduction
[bookmark: _GoBack][bookmark: _Toc381223957][bookmark: _Toc421633495]This guide provides an introduction to Microsoft PowerShell, and how to use Metalogix Content Matrix with it.
What is PowerShell
Microsoft PowerShell is a task automation and configuration management framework, consisting of a scripting language and ISE built on the .NET framework. Metalogix Content Matrix uses PowerShell as a framework to automate and configure actions.
[bookmark: _Toc381223958][bookmark: _Toc421633496]PowerShell object types
PowerShell object types that will be used in this document:
[bookmark: _Toc381223959]DLL (module)
Dynamic link library (also known as a module). A library of code that must be installed on a machine before snapins from the library can be used in PowerShell. Metalogix will automatically register and install the Content Matrix DLLs during the Content Matrix console installation process. Microsoft SharePoint PowerShell dlls (non-Metalogix) are available on any server with a SharePoint hive.
Tip: To repair the Content Matrix PowerShell DLL installation, run the Content Matrix installation repair wizard.
Tip: Metalogix PowerShell cmdlets can be run anywhere Content Matrix is installed, but Microsoft SharePoint cmdlets cannot. Ensure that if you are directly accessing SharePoint cmdlets that you are running PowerShell from a machine with SharePoint installed.
[bookmark: _Toc381223960]Snapin
Compiled reference of cmdlets that can be added to a PowerShell execution process. Once registered, all entries within that cmdlet can be used in scripts during the lifetime of that process.
Syntax: add-pssnapin “name”
Tip: Every time you open the PowerShell ISE the Metalogix snapins must be added again, so try configuring a profile to automatically load them upon execution of the ISE process.
[bookmark: _Toc381223961]Cmdlet
A function that can be executed to perform a specific action. Cmdlet execution will encompass the majority of work done in PowerShell, as both Metalogix and Microsoft SharePoint use cmdlets to automate the majority of work.
Syntax: get-mlsharepointsite –url “URL”
[bookmark: _Toc381223962][bookmark: _Toc421633497]PowerShell scripting objects
An in depth explanation of scripting and the corresponding objects is outside the scope of this document, but the following objects will be relevant:
[bookmark: _Toc381223963]Variable
A variable in PowerShell is a storage container for a value. Variables always have the prefix “$”
Syntax: $variable = “Value”
[bookmark: _Toc381223964]Conditional statement
A conditional statement in PowerShell is a logical gate which will only execute if the condition is met.
Syntax: if($condition -eq $true) { #Run }
[bookmark: _Toc381223965]Loop
A loop in PowerShell is a conditional logic block that will run as many times as the condition evaluates to true. There are many types of loops, but this document will only reference the Foreach loop. The foreach loop is a special type of loop that takes in a collection of objects (a variable), and will run once for every object in the collection.
Syntax: Foreach($site in $siteCollection) { #Run }
[bookmark: _Running_PowerShell][bookmark: _Toc381223966][bookmark: _Toc421633498]Running PowerShell
Microsoft PowerShell can be run in multiple ways (in order of usefulness):
1) PowerShell ISE
2) Dell’s PowerGUI
3) Metalogix PowerShell Console
4) Microsoft PowerShell Console
5) Run a .ps1 file
[bookmark: _Toc381223967]PowerShell ISE
[image:]
Available here: C:\Windows\System32\WindowsPowerShell\v1.0\powershell_ise.exe
The PowerShell ISE is an integrated scripting environment designed for executing and debugging PowerShell scripts. Whenever possible the ISE should be utilized as it provides the most power and capability. Use the PowerShell ISE whenever possible.
Tip: Use the PowerShell ISE to register your PowerShell snapins, and it will auto-complete cmdlet calls and provide suggestions while debugging.
Dell’s PowerGUI
PowerGUI is a more powerful PowerShell script editor that is available from Dell for free from here.
[image:]
[bookmark: _Toc381223968]Metalogix PowerShell Console
Available here: Metalogix install directory
The Metalogix PowerShell Console is a scripting console able to run individual PowerShell commands and scripts. The Metalogix PowerShell Console comes equipped with the Metalogix snapins predefined, and will be able to execute Metalogix cmdlets immediately.
[bookmark: _Toc381223969]Microsoft PowerShell Console
Available here: C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe
The Microsoft PowerShell Console is identical to the Metalogix PowerShell Console, except that the Metalogix snapins are not equipped. To run Metalogix PowerShell scripts in the default console, the snapins must be added.
[bookmark: _Toc381223970]Run a .ps1 file
Running .ps1 files will automatically open the default scripting console for the .ps1 file format and run the script in that context. If this is the Microsoft PowerShell Console, the Metalogix snapins must be added before the script will run successfully.
[bookmark: _Toc381223971][bookmark: _Toc421633499]Using Metalogix Content Matrix with PowerShell
Metalogix installs PowerShell DLLs during the Metalogix Content Matrix Console installation.
Tip: If Content Matrix is not installed on the computer that is running the PowerShell scripts, then they will not be able to access the Metalogix snapins without manual installation.
[bookmark: _Toc381223972][bookmark: _Toc421633500]Snapins
Metalogix snapins must be added to PowerShell before any cmdlets can be run. There are three Content Matrix PowerShell snapins available after installation of the Metalogix Content Matrix Console:
1) Metalogix.System.Commands
2) Metalogix.SharePoint.Commands
3) Metalogix.SharePoint.Migration.Commands
Tip: To find all of the available commands in a snapin, you can add the snapin to the PowerShell ISE and refresh the cmdlet list on the commands window. Once it refreshes with the new snapin, you can examine each cmdlet available in the snapin by choosing it from the modules dropdown. If you aren’t using the PoweShell ISE, you can call “Get-Command -pssnapin metalogix.*” to print the commands available in all Metalogix snapins.
Tip: To get the parameters on a specific cmdlet, you can call “Get-Help Get-MLSharePointSite”
[bookmark: _Toc381223973]Metalogix.System.Commands
This snapin is responsible for interpreting the Content Matrix auto-generated script retrieval objects and filters, and should very rarely be used manually.
[bookmark: _Toc381223974]Metalogix.SharePoint.Commands
This snapin contains cmdlets that perform Add/Get/Remove/Compare actions. It is most commonly used to retrieve the source and target objects in a SharePoint copy action. It can also be used to create, delete or compare objects in the live SharePoint environment.
[bookmark: _Toc381223975]Metalogix.SharePoint.Migration.Commands
This snapin contains cmdlets that perform migration actions.
[bookmark: _Adding_Snapins][bookmark: _Toc381223976][bookmark: _Toc421633501]Adding Snapins
To use snapins in PowerShell, you must add them to the process. As mentioned above, the Metalogix PoweShell console comes with all snapins automatically added, others do not. To add the Metalogix snapins, you must execute the following statements:

Add-PSSnapin metalogix.system.commands
Add-PSSnapin metalogix.sharepoint.commands
Add-PSSnapin metalogix.sharepoint.migration.commands

These statements can be run manually when you open run your PowerShell management utility, or they can be added to each script at the beginning.
Tip: Trying to add a snapin when it is already added will throw an error, so try wrapping the snapin addition code at the beginning of your scripts with a check to see if they already exist.
[bookmark: _Toc381223977][bookmark: _Toc421633502]Using Metalogix Cmdlets
All Metalogix functions are executed via pre-built cmdlets in PowerShell that take a set of parameters corresponding to the action options.
Tip: An explanation of each cmdlet (and parameters) is outside the scope of this document, but can be retrieved via the Metalogix PowerShell Reference, as well as the built in product documentation under the “PowerShell” heading.
[bookmark: _Toc381223978]Generating scripts
Scripts using the Metalogix Content Matrix PowerShell cmdlets are usually created by generating a script from the UI. The action cmdlets can be called directly, but the parameters can be difficult to understand without configuring and generating them from the UI first.
Tip: The majority of actions in Content Matrix can generate PowerShell scripts from their configuration, but there are some exceptions, like copying taxonomy term stores.
To generate a script:
1) Configure an action in the standard fashion, except instead of running the action once configuration is complete, choose the “Save” button at the bottom of the configuration dialog instead.
[image:]
2) Right click the entry in the job listing that corresponds to the saved configuration and choose the “Generate PowerShell Script->For Current User” option.
[image:]
Tip: Scripts generated by the application are automatically saved as <Unique GUID>.ps1 in the running user %temp% directory.
3) The generated script can either be saved with a permanent name in a different location, or components of it can be copied and pasted into a different script.
[bookmark: _Toc381223979]Editing scripts
Scripts generated by Content Matrix have the following steps:
1) $SourceCollection = New-MetalogixSerializableObjectCollection …
· This block initializes the source collection for the action
2) $TargetCollection = New-MetalogixSerializableObjectCollection …
· This block initializes the target collection for the action
3) foreach($Target in $TargetCollection) …
· This block iterates through each object in the target collection, in case there are multiple. Note that the CMDLET itself will iterate through each object in the source collection if it supports multiple source objects.
4) $SourceCollection | Copy-MLSharePointSite -Target $Target …
· This block runs once per iteration of the foreach loop in step 3, and pipes the source collection into the cmdlet execution. The RUN CMDLET
Tip: If the script will be run more than once, or modified in any fashion, a best practice is to replace step 1 and 2 with the Get-Object cmdlets from the Metalogix.SharePoint.Commands snapin.
Editing a Metalogix generated PowerShell script can be done quickly and easily. Let’s create the same script below using Metalogix cmdlets:
1) $source = Get-MlSharePointSiteFromDatabase …
a. This block retrieves a source database site and stores it in the $source variable
2) $target = Get-MlSharePointSite …
a. This block retrieves a target SharePoint site and stores it in the $target variable
3) Copy-MLSharePointSite –source $source –target $target …
a. This block copies the source site into the target site by running the cmdlet with the same options, replacing the –source and –target parameters with the variables we retrieved in step 1 and 2
This is a much simpler script that performs the same action. The auto-generated information from Content Matrix can be confusing, so it is recommended to replace it like the above before editing any more of the script.
Tip: Any parameters in the Metalogix cmdlets can be replaced by variables. Try replacing parameters to see what effects it has on the copy (in test migrations…).
[bookmark: _Toc381223980]Advanced editing
PowerShell supports many advanced operations. Some examples of what you can use PowerShell to achieve:
· Reading data from a CSV file or SharePoint list and using it to change cmdlet parameters
· Reading XML files and copying specified objects from them
· Reading entire SharePoint object hierarchies and migrating them using Content Matrix cmdlets sequentially. Example, copying an entire SharePoint database or web application in a single script
· Scaling out Content Matrix migrations
[bookmark: _Toc381223981]Running scripts
Once the script has been generated, edited and saved, it can be run from any of the previously mentioned programs.
Tip: Before you can run PowerShell scripts on a machine, you’ll need to set the execution policy of that machine. By default, a server will deny scripts permission to run, so you need to run the “Set-ExecutionPolicy -ExecutionPolicy <Policy type>” cmdlet.

Sample Script to Demote Site Collections based on values in a SharePoint list
To illustrate an example of the PowerShell capabilities of Content Matrix, and help you understand more of how this works, we have included a sample PowerShell script in this document below. Before using it, please change its name to remove the .txt component. This script will need to be modified in your environment to work.
The purpose of the script is to loop through a SharePoint 2010 list that contains items referencing source Site Collections, Target Site Collections onto which you’d like to demote (Paste as Subsite) the source Site Collection, and Status (see image below):

[image:]
The script is well commented to further explain what it does. Once you have modified the script to suit your environment, save it on the machine in which you have Content Matrix SharePoint Edition installed to your documents folder. Then follow these steps:
1. Go to Start/All Programs/ Metalogix/Content Matrix Console/SharePoint Edition/ and select Content Matrix Console – SharePoint Edition PowerShell Console.
[image:]

[image:]

2. In the console, change directory to your Documents directory to your documents directory:
[image:]
3. Now run the script with the format ./DemoteSiteCollections.ps1
[image:]

4. You should start seeing progress in the migration
[image:]

5. Once the script completes, use the Content Matrix console to confirm that the Site Collections were indeed demoted/pasted as subsites to your target.
6. In the Job list, go to the File Menu, and select Refresh to see the jobs in the job log:

[image:]

7. Confirm in the list that the Status for each item has now changed to complete:
[image:]

image2.png
3 Windows PowerShell ISE -
File Edit View Tools Debug Add-ons Help

o

I = DN Bl =8 oo &E.
Untitled1.ps1 X #) ||| commands X X
! Modules: | All v | |Refresh
Name:
A

Add-AppxPackage
Add-AppxProvisionedPackage
Add-BCDataCacheExtension
Add-BitLockerKeyProtector
Add-BitsFile
Add-CertificateEnrollmentPolicyServer
Add-Computer

Add-Content

Add-DnsClientNrptRule
[indows \System32\WindowsPowershel11\v1.0> Add-DtcClusterTMMapping

Add-History
Add-InitiatorldToMaskingSet
Add-JobTrigger

Add-KdsRootKey

Add-Member

Add-MpPreference
Add-NetEventNetworkAdapter
Add-NetEventPacketCaptureProvider
Add-NetEventProvider
Add-NetEventVmNetworkAdapter
Add-NetEventvmswitch
Add-NetlPHttpsCertBinding

Run

Ln1 Col 1 100%

EE - ™ @0

image3.tmp
Edt Vew Go Debug Iook

DEHII QA %@

Help

b s

Scrt Explorer ax
EEE

B2
07 0756839291046 81036
0 0dab7dt83c-4678.3815.)
0 1410506 95444127 2060604
0] 302ced0e B562-450c 42 0
0 4728056 0304632 81 943
03 1673134709453 901 14
09 7635691 40 4693 bedc el
0] 84988087 bab-44c5-Bad 153
0] 81 a1c27d31c-44b4-0Tc Toe
0] d0284G3-BRed 4717042114
0] 16727216726 4950 BaR0-4AC
0 1372658 201 1-4cb 8165230
0] 13600431 Toe3-1d1 B ce2a

& & Dowrloads
8] Leyigps1

&6 Scibts
48] Metalogix Movelob ps1
8] Melslagiv Movelob Functns

Script execution completed,

1

8 | [t sorptporameter o> 5
Start page)] blalcar...dfa1fpst
T ((bet-PSSmapin -Hame HetalogixBystem. Commanie]
ST { (Get-PSSmapin -Name Metalogix.SharePoint.Mic]

2
3
4
s
6
5
8
s

10
11
12
13
14]
15

KT

1 6m frreach (8 Taraer in ATarmercnlleerinnt (

Load configuration settings
Load-HetalogixConfigurat ionVarishleSetings ~File
Load-HetalogixConfigurat ionVarishleSettings ~File
Load-HetalogixConfigurat ionVarishleSectings ~File

Load source
$SourceCollection = New-MetalogixSerializabledbie

Load target
$TargetCollection = New-MetalogixSerializabledbie

Run the action

Powershel Console

- .\Docunents>

Ln23| col 10 ¢

image4.png
[¥] Check modified dates for kems/Documents

Other Options

[Propagate ftem / Document Deletions @

image5.png
Analyze selected job Contai Started
2] Detee senched ok bl
[®] Export selected job to xml

Rename Job F2
] View log for selected job
%' Change configuration for selected job
Generate PowerShell Script 0 For Current User |
© Navigate @1 For Local Machine

image6.emf
DemoteSiteCollecti ons.ps1.txt

DemoteSiteCollections.ps1.txt
#adding Metalogix Snapins - these allow you to call Content Matrix commands from PowerShell

if ((Get-PSSnapin -Name Metalogix.System.Commands -ErrorAction SilentlyContinue) -eq $null) { add-pssnapin Metalogix.System.Commands | out-null }

if ((Get-PSSnapin -Name Metalogix.SharePoint.Migration.Commands -ErrorAction SilentlyContinue) -eq $null) { add-pssnapin Metalogix.SharePoint.Migration.Commands | out-null }

if ((Get-PSSnapin -Name Metalogix.SharePoint.Commands -ErrorAction SilentlyContinue) -eq $null) { add-pssnapin Metalogix.SharePoint.Commands | out-null }

***[CHANGE FOR YOUR ENVIRONMENT]Load configuration settings of workstation, must be copied from your workstations generated powershell job

Load-MetalogixConfigurationVariableSettings -FilePath "C:\Users\Administrator.MLDEMO\AppData\Roaming\Metalogix\UserSettings.xml" -Scope UserSpecific

Load-MetalogixConfigurationVariableSettings -FilePath "C:\Users\Administrator.MLDEMO\AppData\Roaming\Metalogix\Content Matrix Console - SharePoint Edition\ApplicationSettings.xml" -Scope ApplicationAndUserSpecific

Load-MetalogixConfigurationVariableSettings -FilePath "C:\ProgramData\Metalogix\EnvironmentSettings.xml" -Scope EnvironmentSpecific

#Use SharePoint PowerShell to traverse to the custom list where I've got my source Site Collection, Target Site Collection (or path if you want to copy Site Collections rather than demote Site Collections)

#***[CHANGE FOR YOUR ENVIRONMENT]declare variable named $url and set it's value to the SharePoint site in which you have your custom list

[string]$url = "http://tamirsp2010:600/"

$totalCount = 0

#Write out the URL to the PowerShell console for debugging purposes to make sure you captured the right URL

Write-Host $url

#Create a SPSite object and assign it's URL to the SharePoint site you have your custom list in above.

$site = New-Object Microsoft.SharePoint.SPSite($url)

#Open the SharePoin Site for editing

$web = $site.OpenWeb()

#Write out the Title of the site for debugging purposes

Write-Host $web.Title

#Declare a variable named $list, and set it to the List Name of the custom list you have in your site for source Site Collection, Target Site Collections, etc.

$list = $web.Lists["Migration Sites"]

#Write out list title for debug purposes/confirm that you have it right.

Write-Host $list.Title

#Loop through each item in the list, and in each case, perform the steps in the foreach loop

foreach ($listItem in $list.Items)

{

Write-Host $listItem["Status"]

#Check if the Status field in the custom list is = None. If not, then don't migrate this list, and move on to the next one.

if($listItem["Status"] -eq "None")

	{

		#Change the status of the list item to "In Progress" so that other scripts don't pick up this list

		$listItem["Status"] = "In Progress"

		$listItem.Update()

		#Set the variable $SourceURL to the value of the Source Site Collection column in the current item in the list

		$SourceUrl = $listItem["Source Site Collection"]

		#Set the variable $TargetURL to the value of the Source Site Collection column in the current item in the list

		$TargetUrl = $listItem["Target Site Collection"]

		#Using Metalogix cmdlets, capture the SharePoint Site for the source Site Collection into the $Source variable - Note that best practice is to use encrypted password for this as is generated

		#by Content Matrix PowerShell

		$Source = Get-MLSharePointSite -siteurl $SourceUrl -user "mldemo\Administrator" -password "MLDemoDC!" -AdapterType "OM"

		#Using Metalogix cmdlets, capture the SharePoint Site for the Target Site Collection into the $Target variable - Note that best practice is to use encrypted password for this as is generated

		#by Content Matrix PowerShell		

		$Target = Get-MLSharePointSite -siteURL $TargetUrl -user "mldemo\Administrator" -password "MLDemoDC!" -AdapterType "WS"

		#Using Content Matrix cmdlet for Copying a Site and Pasting it as a Subsite, Copy the source Site Collection and demote it to a subsite of the target Site Collection

		#Note that we are not using ANY parameters for this job. For real world scenarios, create a job in Content Matrix,

		#set the Paste Configuration Screen options, Save the job, and generate it as PowerShell. Then look at the parameters that you will need to add to this command.

		#The last parameter here is very important as it causes the job to be added to the job log (after you go to File/Refresh in the job list.

		Copy-MLSharePointSite -Source $Source -Target $Target -jobfile "C:\Users\administrator.MLDEMO\AppData\Roaming\Metalogix\Content Matrix Console - SharePoint Edition\JobHistory.lst"

		#Update the status of the list so that this item shows that it's migration is complete

		$listItem["Status"] = "Complete"

		$listItem.Update()

		Write-Host $listItem["Status"]

	}

}

$site.Dispose()

image7.tmp
g Tite Source Site Collection Target Site Collection Status.
Engineering mhen hitp://tamirsp2010/sites/Engineering http://tamirsp2013:8080/sites/Engineering In Progress.
Finance fnw hitps//tamirsp2010/sites/Finance hitp://tamirsp2013:8080/sites/alpha None

Sales hitps//tamirsp2010/sites/HR hitp://tamirsp2013:8080/sites/Sales None

image8.tmp
talogix
Contet Matrix Conscle
1. FlleShare Ediion
1. sharepcin: Edtion
(2 Content Wi Cansoe - SharePaint Ed
EF Content Matrix Console - SharePoint Eci

image9.tmp
[indous PoverShell B
[Copyright <C> 2089 Microsoft Corporation. ALl rights reserved. [

[Ps C:\Progran Files (x86>\Metalogix\Content Matrix Consoles\SharePoint Edition>

image10.tmp
indoys PowerShe 1l
Copyright (C> 2087 Microsoft Corporation. A1l rights reserved.

PS C:\Progran Files (x86>\Metalogix\Content Matrix Consoles\SharePoint Edition>

PS C:\users\Adninistrator.MLDEMO\Docunents> —

image11.tmp
indoys PowerShe 1l
Copyright (C> 2087 Microsoft Corporation. A1l rights reserved.

PS C:\Progran Files (x86>\Metalogix\Content Matrix Consoles\SharePoint Edition>

PS C:\users\Adninistrator HLDEMO\Documents> -/DemoteSiteCollections .psi

image12.tmp
2 Administrator: Content Matrix Console - SharePoint Edition PowerShell Console

Windous PoyerShell
Copyright (C> 2089 Microsoft Corporation. A1l rights reserved.

Paste Site as Subsite
Running: Paste Site as Subsite from http://tamirsp2@18/sites/Engineering to
Server Health Information
Server Health Score check is not supported for this adapter type.

PS C:\users\Adninistrator.MLDENONDocunents> ./DemoteSiteCollections.psl
http://tanirop2010:600/

ocunents

Migration Sites

Conplete

Conplete

Conplete

PS C:\users\Adninistrator.MLDEMONDocunents> ./DemoteSiteCollections.psi
http://tanirop2010:600/

ocunents

Migration Sites

None

image13.tmp
Connect ta Jab Database.
New Job List

Open Job List.

Save Tob Lit a5

Import Job from il

ORBEF2E @

Refresh

01 Cil.\Conkent Matrix Console - SharePaint EdtonIobHistory 5t 2

Ml Fie - | % RunTobs X Delete Jobs [Export Excel | [ViewLog
Job Name Source Target Container
o/ Paste Site as Subste etpftemisp0..._hitpftamirsp2013/s.
V/ Paste Site as Subste etpftemisp0..._hitpftamirsp2013/si
Paste Site Colction hetptemisp0..._hitpJamirsp2013:2.

Paste Site as Subsite hitpsJeamirsp20,

Fttprftamirsp2013/si

image14.tmp
O e Tite Source Site Collection Target Site Collection status
Engineering 1Mw http://tamirsp2010/sites/Engineering http://tamirsp2013:8080/sites/Engineering Complete
Finance Hnv http://tamirsp2010/sites/Finance http://tamirsp2013:8080/sites/alpha Complete

Sales hitp://tamirsp2010/sites/HR hitps//tamirsp2013:8080/sites/Sales Complete

image1.png
Metalogix
Content Matrix

